Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Bioorg Chem ; 147: 107369, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38640721

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a complex pathogenic metabolic syndrome characterized by increased inflammation and endoplasmic reticulum stress. In recent years, natural polysaccharides derived from traditional Chinese medicine have shown significant anti-inflammatory effects, making them an attractive therapeutic option. However, little research has been conducted on the therapeutic potential of dried tangerine peel polysaccharide (DTPP) - one of the most important medicinal resources in China. The results of the present study showed that DTPP substantially reduced macrophage infiltration in vivo and suppressed the expression of pro-inflammatory factors and endoplasmic reticulum stress-related genes. Additionally, surface plasmon resonance analysis revealed that DTPP had a specific affinity to myeloid differentiation factor 2, which consequently suppressed lipopolysaccharide-induced inflammation via interaction with the toll-like receptor 4 signaling pathway. This study provides a potential molecular mechanism underlying the anti-inflammatory effects of DTPP on NAFLD and suggests DTPP as a promising therapeutic strategy for NAFLD treatment.

2.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 156-160, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38430027

ABSTRACT

To investigate whether Liraglutide combined with Jinlida granules affects glycolipid metabolism and islet function in the treatment of type 2 diabetes mellitus (T2DM), a control group and an observation group were established with 90 T2DM patients. The control group was given Jinlida treatment and the observation group was given liraglutide combined treatment for 12 weeks. The clinical efficacy, glycolipid metabolism, bone metabolism, islet function, and endothelial function. The curative effect of the observation group was better than that of the control group. After treatment, FBG, 2hPG, HbAlc, TC, TG, and LDL-C in the observation group were lower and HDL-C was higher than those in the control group (P < 0.05). After treatment, the observation group showed higher bone mineral density, osteocalcin, FINS, and HOMA-ß and lower HOMA-IR than the control group (P < 0.05). After treatment, endothelin-1 level in the observation group was lower than that in the control group, and the NO level was higher (P < 0.05). No significant difference was found in the incidence of adverse reactions between the two groups (P > 0.05). Liraglutide combined with Jinlida in T2DM can improve glucose, lipid, and bone metabolism, promote the recovery of islet function, and enhance vascular endothelial function.


Subject(s)
Diabetes Mellitus, Type 2 , Drugs, Chinese Herbal , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Liraglutide/therapeutic use , Blood Glucose/metabolism , Glycolipids/therapeutic use
3.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38543111

ABSTRACT

COVID-19, caused by SARS-CoV-2, has emerged as the most destructive emerging infectious disease of the 21st century. Vaccination is an effective method to combat viral diseases. However, due to the constant mutation of the virus, new variants may weaken the efficacy of vaccines. In the current field of new coronavirus research, viral protease inhibitors have emerged as a highly regarded therapeutic strategy. Nevertheless, existing viral protease inhibitors do not fully meet the therapeutic needs. Therefore, this paper turned to traditional Chinese medicine to explore new active compounds. This study focused on 24 isolated compounds from Acorus calamus L. and identified 8 active components that exhibited significant inhibitory effects on SARS-CoV-2 PLpro. Among these, the compound 1R,5R,7S-guaiane-4R,10R-diol-6-one demonstrated the best inhibitory activity with IC50 values of 0.386 ± 0.118 µM. Additionally, menecubebane B and neo-acorane A exhibited inhibitory activity against both Mpro and PLpro proteases, indicating their potential as dual-target inhibitors. The molecular docking results confirmed the stable conformations of these compounds with the key targets and their good activity. ADMET and Lipinski's rule analyses revealed that all the small molecule ligands possessed excellent oral absorption properties. This study provides an experimental foundation for the discovery of promising antiviral lead compounds.

4.
Hong Kong J Occup Ther ; 36(1): 31-38, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37332295

ABSTRACT

Background: To investigate the physical and psychological effects of five-element music therapy combined with Baduanjin qigong treatment on inpatients with mild coronavirus disease 2019 (COVID-19) in Wuhan. Methods: A mixed-methods study was used. In the quantitative study, a randomized controlled trial was performed on 40 study participants divided into a control group (n = 20) and an intervention group (n = 20). The Self-rating Anxiety Scale, Self-rating Depression Scale and Pittsburgh Sleep Quality Index were compared. For qualitative analysis, it adopted purposive sampling method, 13 patients of different ages from 18 to 60 years old and different exercise behavior were selected as the participants from the intervention group. A semi-structured interview method was used to collect data, and the content analysis method was used for data analysis. An interview outline was developed to assess the psychological condition and personal functional-exercise behavior of patients. Results: In the quantitative study, the anxiety self-scores and depression self-scores of patients in intervention group were significantly lower compared with control group after treatment (p < .05). The sleep quality of intervention group was significantly improved compared with control group (p < .001). Participants in the qualitative study responded to questions posed through semi-structured interviews. The effect of intervention was good, which has been supported and recognized by patients. Conclusion: The treatment of five-element music therapy combined with Baduanjin qigong on patients with mild COVID-19 alleviated anxiety and depression, and improved sleep quality, which was beneficial to the patients' physical and psychological recovery.

5.
Dev Comp Immunol ; 143: 104678, 2023 06.
Article in English | MEDLINE | ID: mdl-36907337

ABSTRACT

The giant freshwater prawn (Macrobrachium rosenbergii) is a commercially valuable freshwater crustacean species that frequently appears a death affected by various diseases, resulting in substantial economic losses. Improving the survival rate of M. rosenbergii is a hot and essential issue for feeding the prawns. Scutellaria polysaccharide (SPS) extracted from Scutellaria baicalensis (a Chinese medicinal herb) is conducive to the survival rate of organisms by enhancing immunity and antioxidant ability. In this study, M. rosenbergii was fed 50, 100, and 150 mg/kg of SPS. The immunity and antioxidant capacity of M. rosenbergii were tested by mRNA levels and enzyme activities of related genes. The mRNA expressions of NF-κB, Toll-R, and proPO (participating in the immune response) in the heart, muscle, and hepatopancreas were decreased after four weeks of SPS feeding (P < 0.05). This indicated that long-term feeding of SPS could regulate the immune responses of M. rosenbergii tissues. The activity levels of antioxidant biomarkers, alkaline phosphatase (AKP), and acid phosphatase (ACP) had significant increases in hemocytes (P < 0.05). Moreover, catalase (CAT) activities in the muscle and hepatopancreas, as well as superoxide dismutase (SOD) activities in all tissues, significantly decreased after four weeks of culture (P < 0.05). The results demonstrated that long-term feeding of SPS could improve the antioxidant capacity of M. rosenbergii. In summary, SPS was conducive to regulating the immune capacity and enhancing the antioxidant capacity of M. rosenbergii. These results provide a theoretical basis for supporting SPS addition to the feed of M. rosenbergii.


Subject(s)
Palaemonidae , Scutellaria , Animals , Antioxidants/metabolism , Scutellaria/genetics , Scutellaria/metabolism , Polysaccharides , Fresh Water , RNA, Messenger
6.
Planta Med ; 89(5): 571-579, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36170857

ABSTRACT

Lasiocarpine (LAS) and heliotrine (HEL) are two different ester types of toxic pyrrolizidine alkaloids (PAs): open-chain diester and monoester. However, the pharmacokinetics of these two types of PAs in rats have not been reported. In the present study, two LC-MS/MS methods for determining LAS and HEL were established and validated. The methods exhibited good linearity, accuracy, and precision and were then applied to a comparative pharmacokinetic study. After intravenous administration to male rats at 1 mg/kg, the AUC0-t values of LAS and HEL were 336 ± 26 ng/mL × h and 170 ± 5 ng/mL × h. After oral administration at 10 mg/kg, the AUC0-t of LAS was much lower than that of HEL (18.2 ± 3.8 ng/mL × h vs. 396 ± 18 ng/mL × h), while the Cmax of LAS was lower than that of HEL (51.7 ± 22.5 ng/mL × h vs. 320 ± 26 ng/mL × h). The absolute oral bioavailability of LAS was 0.5%, which was significantly lower than that of HEL (23.3%). The results revealed that the pharmacokinetic behaviors of LAS differed from that of HEL.


Subject(s)
Pyrrolizidine Alkaloids , Tandem Mass Spectrometry , Rats , Animals , Chromatography, Liquid , Tandem Mass Spectrometry/methods , Administration, Oral
7.
ACS Nano ; 16(7): 11204-11217, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35792576

ABSTRACT

Nanoscale sulfur can be a multifunctional agricultural amendment to enhance crop nutrition and suppress disease. Pristine (nS) and stearic acid coated (cS) sulfur nanoparticles were added to soil planted with tomatoes (Solanum lycopersicum) at 200 mg/L soil and infested with Fusarium oxysporum. Bulk sulfur, ionic sulfate, and healthy controls were included. Orthogonal end points were measured in two greenhouse experiments, including agronomic and photosynthetic parameters, disease severity/suppression, mechanistic biochemical and molecular end points including the time-dependent expression of 13 genes related to two S bioassimilation and pathogenesis-response, and metabolomic profiles. Disease reduced the plant biomass by up to 87%, but nS and cS amendment significantly reduced disease as determined by area-under-the-disease-progress curve by 54 and 56%, respectively. An increase in planta S accumulation was evident, with size-specific translocation ratios suggesting different uptake mechanisms. In vivo two-photon microscopy and time-dependent gene expression revealed a nanoscale-specific elemental S bioassimilation pathway within the plant that is separate from traditional sulfate accumulation. These findings correlate well with time-dependent metabolomic profiling, which exhibited increased disease resistance and plant immunity related metabolites only with nanoscale treatment. The linked gene expression and metabolomics data demonstrate a time-sensitive physiological window where nanoscale stimulation of plant immunity will be effective. These findings provide mechanistic understandings of nonmetal nanomaterial-based suppression of plant disease and significantly advance sustainable nanoenabled agricultural strategies to increase food production.


Subject(s)
Solanum lycopersicum , Sulfur/pharmacology , Plant Diseases/prevention & control , Soil/chemistry , Plants/metabolism , Sulfates/metabolism
8.
J Ethnopharmacol ; 296: 115465, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35718051

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Mume Fructus (MF) is a well-known traditional Chinese medicine used to treat chronic cough, prolonged diarrhea, and other inflammation-related diseases. We previously confirmed the anti-colitis effect of its ethanol extract on a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced Crohn's disease (CD) rat model. However, the active ingredients and underlying mechanisms of MF remain unknown. AIM OF THE STUDY: To clarify the material basis and potential mechanism of the ethanol extract of MF (MFE) in alleviating CD and its complications, such as lung injury and intestinal obstruction. MATERIALS AND METHODS: MF was extracted with 80% ethanol aqueous solution and separated with 0, 40, and 100% ethanol aqueous solutions. MFE and its fractions were screened in a TNBS-induced CD rat model. For the bioactive fraction, the chemical composition was identified and quantified using ultrahigh-performance liquid chromatography coupled with diode-array detection and quadrupole time-of-flight tandem mass spectrometry. Interleukin (IL)-1ß, IL-6, IL-17, transforming growth factor (TGF)-ß, and lipopolysaccharide (LPS) levels in the colon, lungs, and/or plasma were detected using enzyme-linked immunosorbent assays. The expression levels of zonula occludens-1 (ZO-1) and occludin in the colon were measured using immunohistochemical staining, and the intestinal microbiota and short-chain fatty acid (SCFA) levels were analyzed using 16S rRNA gene sequencing and gas chromatography/mass spectrometry. RESULTS: The 40% ethanol fraction of MF (MFE40), which mainly contained methyl citrate, ethyl citrate, and caffeoylquinic acid ethyl esters, was identified as the active fraction that could alleviate CD in rats. MFE40 could ameliorate inflammation and fibrosis in the colon and lung tissues by inhibiting the secretion of cytokines, such as IL-1ß, IL-6, IL-17, and TGF-ß, along with intestinal obstruction and lung injury in CD rats. The possible mechanisms of MFE40 were related to increased expression of ZO-1 and occludin in the colon, reduction in plasma LPS levels, and restoration of SCFAs via reduction in the relative abundance of Adlercreutzia, Clostridium_sensu_stricto_1, Erysipelatoclostridium, Faecalibaculum, norank_f_Erysipelotrichaceae, Phascolarctobacterium Coriobacteriaceae_UGG_002, and Allobaculum and increase in the relative abundance of Escherichia shigella, Christensenella, Acetivibrio_ethanolgignens, and Butyricicoccus. MFE40 had no significant influence on the inflammatory factors in healthy rats. CONCLUSIONS: Citrate esters and hydroxycinnamate esters are the main active constituents of MFE40. MFE40 exhibited a remission effect on CD rats and inhibited intestinal obstruction and lung injury via anti-inflammatory effects and regulation of the intestinal microbiota-gut-lung homeostasis.


Subject(s)
Crohn Disease , Intestinal Obstruction , Lung Injury , Animals , Citrates/metabolism , Colon , Crohn Disease/chemically induced , Crohn Disease/drug therapy , Crohn Disease/metabolism , Cytokines/metabolism , Disease Models, Animal , Ethanol/pharmacology , Inflammation/metabolism , Interleukin-17/metabolism , Interleukin-6/metabolism , Intestinal Obstruction/metabolism , Lipopolysaccharides/pharmacology , Lung Injury/metabolism , Occludin/metabolism , RNA, Ribosomal, 16S , Rats , Trinitrobenzenesulfonic Acid/toxicity
9.
J Immunol Res ; 2022: 4126273, 2022.
Article in English | MEDLINE | ID: mdl-35345778

ABSTRACT

American ginseng (Panax quinquefolius L.) is an herbal medicine with polysaccharides as its important active ingredient. The purpose of this research was to identify the effects of the polysaccharides of P. quinquefolius (WQP) on rats with antibiotic-associated diarrhoea (AAD) induced by lincomycin hydrochloride. WQP was primarily composed of galacturonic acid, glucose, galactose, and arabinose. The yield, total sugar content, uronic acid content, and protein content were 6.71%, 85.2%, 31.9%, and 2.1%, respectively. WQP reduced the infiltration of inflammatory cells into the ileum and colon, reduced the IL-1ß, IL-6, IL-17A, and TNF-α levels, increased the levels of IL-4 and IL-10 in colon tissues, improved the production of acetate and propionate, regulated the gut microbiota diversity and composition, improved the relative richness of Lactobacillus and Bacteroides, and reduced the relative richness of Blautia and Coprococcus. The results indicated that WQP can enhance the recovery of the intestinal structure in rats, reduce inflammatory cytokine levels, improve short-chain fatty acid (SCFA) levels, promote recovery of the gut microbiota and intestinal mucosal barrier, and alleviate antibiotic-related side effects such as diarrhoea and microbiota dysbiosis caused by lincomycin hydrochloride. We found that WQP can protect the intestinal barrier by increasing Occludin and Claudin-1 expression. In addition, WQP inhibited the MAPK inflammatory signaling pathway to improve the inflammatory status. This study provides a foundation for the treatment of natural polysaccharides to reduce antibiotic-related side effects.


Subject(s)
Panax , Animals , Anti-Bacterial Agents/adverse effects , Diarrhea/chemically induced , Diarrhea/drug therapy , Diarrhea/metabolism , Lincomycin/pharmacology , Lincomycin/therapeutic use , MAP Kinase Signaling System , Panax/chemistry , Polysaccharides/pharmacology , Polysaccharides/therapeutic use , Rats
10.
Life Sci ; 298: 120458, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35248525

ABSTRACT

AIMS: Lysine-specific demethylase 5B (KDM5B) is an epigenetic regulator of chromatin that catalyzes the demethylation of histone 3 lysine 4. It is overexpressed in multiple cancer types and acts as a therapeutic target in cancer therapy. Nevertheless, its upstream regulatory pathway is not completely understood, prompting the search for the underlying biological factors driving KDM5B overexpression. MATERIALS AND METHODS: A comprehensive analysis was performed to examine the association between KDM5B overexpression and copy number variation (CNV), somatic mutation, mRNA expression, miRNA expression, and clinical characters from The Cancer Genome Atlas database. Coexpression and function enrichment analyses were performed with KDM5B-coexpressed genes. The gastric cancer (GC) cell line MKN45 was utilized to verify the regulation of KDM5B using the transcription factor (TF) Yin Yang 1 (YY1) and miR-29a-3p. KEY FINDINGS: KDM5B was overexpressed and associated with poor prognosis in GC. KDM5B upregulation was driven by CNV amplification and DNA hypomethylation rather than by KDM5B mutations. Enrichment analysis revealed that KDM5B-coexpressed genes were primarily related to the transmembrane transport function and the ubiquitin-mediated proteolysis signaling pathway. As a TF, YY1 might bind to the KDM5B promoter region to regulate KDM5B expression. In addition, miR-29a-3p might bind to and negatively regulate KDM5B expression. SIGNIFICANCE: Our results demonstrate that KDM5B expression is regulated via CNV amplification, DNA hypomethylation, and YY1 and miR-29a-3p; KDM5B expression regulation is associated with patient survival and tumor cell proliferation.


Subject(s)
MicroRNAs , Stomach Neoplasms , Cell Line, Tumor , Cell Proliferation/genetics , DNA , DNA Copy Number Variations/genetics , Gene Expression Regulation, Neoplastic , Humans , Jumonji Domain-Containing Histone Demethylases/genetics , Jumonji Domain-Containing Histone Demethylases/metabolism , Lysine/metabolism , MicroRNAs/genetics , Nuclear Proteins/genetics , Repressor Proteins/genetics , Stomach Neoplasms/genetics
11.
Phytomedicine ; 99: 154002, 2022 May.
Article in English | MEDLINE | ID: mdl-35231824

ABSTRACT

BACKGROUND: Mume Fructus (MF) is used in traditional Chinese herbal medicine (TCM) to treat chronic cough, prolonged diarrhea, and other inflammation-related diseases. It is processed from Prunus mume fruit (PM) by drying at low temperature according to the Chinese Pharmacopoeia. The standard quality control method includes measurement of citric acid content, which is not sufficient to determine its clinical efficacy. In addition, the quality markers, that would ensure consistent drug composition and stability during extraction and processing of the drug, are currently not available. PURPOSE: This study sought to determine and analyze the bioactive compounds in MF and to establish the quality maker evaluation system, which would enable accurate assessment of different processing and extraction approaches for MF preparation. STUDY DESIGN AND METHODS: First, a UPLC-QTOF-MS/MS method was established to identify the chemical constituents of PM and MF. Second, the 2,4,6-trinitrobenzenesulfonic acid (TNBS)-treated rats were used to assess anti-inflammatory activity of water and ethanol extracts of PM and MF. Third, correlation analysis and multivariate statistical analysis was used to seek the candidate quality markers of MF. Fourth, molecular docking was used to predict the potential mechanism of identified compounds for the anti-inflammatory activity. Finally, a UPLC method was established to quantify the selected quality markers in MF products, that were prepared by different drying processes. RESULTS: 99 components (28 newly reported) were identified from PM and MF. During the drying process several changes in the composition were observed; caffeoylquinic acids were degraded to p-coumaric acid, caffeic acid, protocatechuic acid, or p-hydroxybenzoic acid; multi-acetyl p-coumaroyl sucroses were degraded to mumeose R and p-coumaroyl-3-O-sucrose. On the other hand, contents of mumefural and amygdalin increased after drying process. In colitis rats, MF reduced more NO levels to greater extent in comparison to PM, which could be attributed to the presence of caffeic acid, p-coumaric acid, protocatechuic acid, p-hydroxybenzoic acid, mumefural, p-coumaroyl-3-O-sucrose, mumeose R, and amygdalin in MF. Moreover, water extracts were better than ethanol extracts in alleviating the IL-1ß, IL-6, and IL-17 levels, possibly on account of citric acid and caffeoylquinic acids. The predicted mechanism of action could be through inhibition of the production of NLRP3, TLR4, and NF-κB proteins. Finally, 7 compounds (citric acid, 3-O-caffeoylquinic acid, 5-O-caffeoylquinic acid, 4-O-caffeoylquinic acid, caffeic acid, protocatechuic acid, and p-coumaric acid) were selected as quality markers of MF that could be used for the process quality control. CONCLUSION: This study revealed the material basis of PM and MF for anti-colitis activity and discovered the quality markers of MF which could reflect the anti-inflammatory activity and the processing process of MF.

12.
Article in English | MEDLINE | ID: mdl-34868330

ABSTRACT

BACKGROUND: Functional constipation (FC) is one of the prevalent gastrointestinal disorders that affect people of all ages. Long-term FC has significant effects on the quality of life of patients. Although commonly used drugs have reliable short-term effects, they are easily addictive and have side effects. Therefore, pursuing a convenient drug-food homogenous program is critical for FC patients. Maxing Xianchang Su is a functional food based on traditional Chinese medicine. To investigate the efficacy and safety of Maxing Xianchang Su in FC treatment, we conducted a randomized controlled trial. METHODS: We carried out a prospective multicenter randomized parallel controlled study in three hospitals in Jiangsu Province, China, from January 2020 to March 2021, which included 206 FC patients. All patients were arbitrarily assigned into a treatment group and a control group at a ratio of 1 : 1; 103 cases in each group. The treatment group was given oral Maxing Xianchang Su, whereas the control group was treated with lactulose oral solution. The course of treatment was two weeks. The two groups of patients were evaluated after six weeks for symptom improvement before and after taking the drug. Furthermore, the safety of Maxing Xianchang Su was assessed. RESULTS: Both groups of patients successfully completed the study without shedding cases. The effective rates of the treatment group and control group after two weeks were 90.6% and 67.0%, respectively. The treatment group had a better curative effect than the control group (P < 0.05). The symptom score of the two groups improved compared with that before the treatment. The difference between the two groups was statistically significant (P < 0.05). During the treatment process, neither group experienced abnormal changes in blood lipid, blood glucose, routine hematuria, or liver and kidney functions. There were no adverse reactions in both groups. CONCLUSION: Maxing Xianchang Su has a positive effect on FC treatment with reliable mid-term effect and a high level of safety.

13.
Phytomedicine ; 93: 153790, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34710756

ABSTRACT

BACKGROUND: Sijunzi decoction (SJZD), reported in "Tai Ping Hui Min He Ji Ju Fang" of the Song dynasty, is the basic prescription for the treatment of spleen deficiency syndrome (SDS) in traditional Chinese medicine (TCM). It is composed of Ginseng Radix et Rhizoma, Atractylodisa Macricephalae Rhizoma, Poria and Glycyrrhizae Radix et Rhizoma Praeparata Cum Melle. PURPOSE: This study sought to explore the effects of different components in SJZD (including nonpolysaccharide NPS and active polysaccharide S-3) on SDS rats and their underlying mechanisms. STUDY DESIGN AND METHODS: First, SDS model rats were established by reserpine injection and then treated with SJZD, NPS and S-3. To clarify their effect on GI motility and immune function, the gastrointestinal (GI) hormone levels in rat serum and their related receptor expressions in rat intestine were detected by enzyme-linked immunosorbent assay (ELISA) and western blot, and the intestinal T lymphocyte expression were quantified by flow cytometry. The levels of SCFAs in feces and serum were measured by gas chromatography-mass spectrometry (GC-MS), and the gut microbiota composition was determined by 16S RNA sequencing. Furthermore, pseudo-germ-free (pGF) and gut microbiota dysbiosis (GMD) model rats were established to verify the key role of the gut microbiota in the treatment of SDS with SJZD, NPS and S-3. RESULTS: SJZD has a stronger therapeutic effect on intestinal immune and GI hormone secretion in SDS rats, while the efficacy of NPS and S-3 showed slight differences. NPS mainly regulated the secretion of GI hormones in SDS rats and directly improved intestinal immunity by increasing the expression of T lymphocyte cells, while S-3 mainly enhanced intestinal immune function by increasing the expression of T lymphocyte cells and repairing the intestinal barrier in both direct and indirect ways. Additionally, experiments in pGF and GMD rats have proven that the immune-enhancing effects of SJZD, NPS, and S-3 on SDS rats and the regulation of GI hormones of S-3 are related to modulation of the gut microbiota composition, while the regulation of GI hormones by SJZD and NPS is not completely dependent on this modulation. In particular, Lactobacillus, SMB53, Blautia, Dorea, Collinsella and Adlercreutzia were significantly modulated by SJZD, and 3 genera (including Lactobacillus, Dorea and SMB53) were also remarkably regulated by NPS. S-3 significantly increased the abundance of Butyricimonas and Collinsella, which were different from altered genera in the SJZD group. CONCLUSION: This study uncovered that NPS and S-3 are inseparable effective substances for SJZD in the treatment of SDS rats, in which NPS mainly improves intestinal motility dysfunction and S-3 mainly enhances intestinal immunity. The mediation effect of the gut microbiota is extremely important, but the regulating effect of NPS on gastrointestinal hormones has nothing to do with the gut microbiota.


Subject(s)
Drugs, Chinese Herbal , Spleen , Animals , Drugs, Chinese Herbal/pharmacology , Glycyrrhiza , Male , Polysaccharides/pharmacology , Rats
14.
Biomed Pharmacother ; 143: 112160, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34560546

ABSTRACT

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease. Bu-Shen-Tong-Du prescription (BSP) has traditionally been used in to treat RA but its underlying mechanisms remain unclear. In this study, we explored the potential mechanisms of BSP in collagen-induced arthritis (CIA) rats, a classic animal model of RA. We employed an integrated pharmacology approach in combination with network pharmacology, 1H-nuclear magnetic resonance (NMR) metabolomics, and biochemical analyses to determine the mechanisms of BSP for treating RA. We found that BSP can regulate immunity and inflammation by decreasing the spleen index; inhibiting hyperplasia of the white pulp; reducing the levels of IL-1ß, IL-6, IL-17A, and IFN-γ; and increasing the levels of IL-10 in the serum. Network pharmacology was utilized to predict related signal transduction pathways of BSP in RA treatment. 1H NMR metabolomics of the serum confirmed that BSP regulated energy metabolism and amino acid metabolism. Finally, we validated the Toll-like receptor 4 (TLR4)/nuclear factor (NF)-κB signaling pathway using immunohistochemical methods, which demonstrated that BSP controlled RA-induced inflammation by inhibiting the TLR4/NF-κB signaling pathway. These results confirm the therapeutic effect of BSP in a CIA rat model, which is exerted via the inhibition of the inflammation and the improvement of the immune function, balancing energy metabolism and amino acid metabolism, and inhibiting the TLR4/NF-κB signaling pathway. This study provides an experimental basis for using BSP as a combinatorial drug to inhibit inflammation and regulate immunity in the treatment of RA.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antirheumatic Agents/pharmacology , Arthritis, Experimental/drug therapy , Drugs, Chinese Herbal/pharmacology , Joints/drug effects , Network Pharmacology , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/immunology , Arthritis, Experimental/metabolism , Collagen Type II , Cytokines/metabolism , Energy Metabolism/drug effects , Joints/immunology , Joints/metabolism , Joints/pathology , Male , Medicine, Chinese Traditional , NF-kappa B/metabolism , Rats, Sprague-Dawley , Signal Transduction , Toll-Like Receptor 4/metabolism
15.
Am J Transl Res ; 13(7): 7654-7666, 2021.
Article in English | MEDLINE | ID: mdl-34377242

ABSTRACT

BACKGROUND: Traditional Chinese Medicine (TCM) massage utilizes mechanical force stimulation, and the amount of mechanical force influences therapeutic outcome. This amount is determined by pressure, frequency, and duration; however, there are no standard definitions for these measures. METHODS: An orthogonal design was used to evaluate massage efficacy using muscle tension as an index. Pressure (2, 4, 6 kg), duration (5, 10, 15 min), frequency (60, 120, 180 repetitions/min), pain (mild, medium, severe), weight (<60, 60-75, >75 kg), and sex (male, female) were evaluated. Additionally, a porcine model of muscle tension was used to construct pressure-time curves for muscle tissues under static and dynamic pressure. RESULTS: We identified an interaction among the six massage measures (P<0.05). Of these measures, only two were individually significant: manipulation frequency and patient pain level (P<0.05). Specifically, 120 repetitions/min improved muscle tension significantly more than 60 or 180 repetitions/min (P<0.05), and patients with severe pain had significantly improved muscle tension compared to those with medium or mild pain (P<0.05). In the porcine muscle model, both static and dynamic pressure were attenuated by approximately 12.5% per cm. This attenuation dropped to 10% per cm when the pressure sensor was placed below tissues with different thicknesses instead of being inserted into tissues at different levels. CONCLUSION: Manipulation frequency and patient pain level were primarily responsible for the therapeutic effects of TCM massage. Mechanistically, pressure was attenuated by nearly 75% at a depth of 2 cm from the muscle surface during TCM massage.

16.
J Ethnopharmacol ; 274: 114033, 2021 Jun 28.
Article in English | MEDLINE | ID: mdl-33741440

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: The Siraitia grosvenorii fruits extract (SG, in which mogrosides are the main components), considered as a non-nutritional sweetener, has an antidiabetic effect. Our previous studies have confirmed that an extract of mogrosides being rich in triterpene glycosides with 1-3 glucosyl residues, designated as low-polar S. grosvenorii glycosides (L-SGgly), had a significant antidiabetic effect. However, whether the mechanism through impacting on gut microbiota to exert the antidiabetic effect of mogrosides remains unclear. AIMS OF THE STUDY: To explore the potential mechanism of mogrosides (SG and L-SGgly) on gut microbiota and faecal metabolites in the treatment of diabetes. STUDY DESIGN AND METHODS: In this study, the effects of SG and L-SGgly on gut microbiota and faecal endogenous metabolites were explored by sequencing the 16S rRNA V3-V4 region of gut microbiota, and detecting with gas chromatography-mass spectrometry (GC-MS) and liquid chromatography quadrupole time-of-flight MS (LC-Q-TOF/MS), respectively. In particular, correlation analyses revealed how these influences affect the anti-hyperglycaemic effect, to give the underlying antidiabetic mechanisms of the mogrosides in S. grosvenorii fruits. RESULTS: After a 14-day treatment with SG and L-SGgly for type 2 diabetes mellitus (T2DM) rats induced by a high-fat diet (HFD) and streptozotocin (STZ), the disordered gut microbiota in the faeces of T2DM rats were recovered. At the same time, the short-chain fatty acids (SCFAs) concentration significantly increased and the deoxycholic acid and 1ß-hydroxycholic acid content decreased in the faeces of T2DM rats. Moreover, correlation analyses provided the evidences that gut microbiota and its metabolites could be the target for exerting the anti-hyperglycaemic effects of SG and L-SGgly. Especially, Elusimicrobium, Lachnospiraceae_UCG-004, acetate, butyrate, and 1ß-hydroxycholic acid would be the potential dominant bacteria and biomarkers for SG and L-SGgly in reducing the blood glucose and insulin resistance of T2DM rats. CONCLUSION: It is the first time that a mechanism of targeting on gut microbiota for the antidiabetic effect of mogrosides in S. grosvenorii fruits has been proposed.


Subject(s)
Cucurbitaceae , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Dysbiosis , Glycosides/pharmacology , Hypoglycemic Agents/pharmacology , Plant Extracts/pharmacology , Triterpenes/pharmacology , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/microbiology , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/microbiology , Dysbiosis/drug therapy , Dysbiosis/metabolism , Dysbiosis/microbiology , Fatty Acids, Volatile , Feces/chemistry , Feces/microbiology , Fruit , Gastrointestinal Microbiome/drug effects , Glycosides/therapeutic use , Hypoglycemic Agents/therapeutic use , Male , Plant Extracts/therapeutic use , Rats, Sprague-Dawley , Triterpenes/therapeutic use
17.
Phytomedicine ; 83: 153471, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33636477

ABSTRACT

BACKGROUND: As the most frequently used kidney-yang tonifying herb in traditional Chinese medicine, dried succulent stems of Cistanche tubulosa (Schenk) Wight (CT) have been shown to be effective in the treatment of depression. However, the antidepressant components and their underlying mechanism remain unclear. PURPOSE: To explore the active components of CT against depression, as well as the potential mechanisms. STUDY DESIGN AND METHODS: Behavioral despair tests were used to assess the antidepressant activities of polysaccharides, oligosaccharides and different glycoside-enriched fractions separated from CT, as well as the typical gut microbiota metabolites including 3-hydroxyphenylpropionic acid (3-HPP) and hydroxytyrosol (HT). Furthermore, the effects of bioactive fractions and metabolites on chronic unpredictable mild stress (CUMS) model were explored with multiple pharmacodynamics and biochemical analyses. Changes in colonic histology and the intestinal barrier were observed by staining and immunohistochemical analysis. Gut microbial features and tryptophan-kynurenine metabolism were explored using 16S rRNA sequencing and western-blotting, respectively. RESULTS: Total glycosides (TG) dramatically alleviated depression-like behaviors compared to different separated fractions, reflecting in the synergistic effects of phenylethanoid and iridoid glycosides on the hyperactivation of the hypothalamic-pituitary-adrenal (HPA) axis, severe neuro- and peripheral inflammation, and deficiencies in 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor in the hippocampus. Moreover, TG mitigated low-grade inflammation in the colon and intestinal barrier disruption, and the abundances of several bacterial genera highly correlated with the HPA axis and inflammation in CUMS rats. Consistently, the expression of indoleamine 2, 3-dioxygenase 1 (IDO1) in the colon was significantly reduced after TG administration, accompanied by the suppression of tryptophan-kynurenine metabolism. On the other hand, HT also exerted a marked antidepressant effect by ameliorating HPA axis function, pro-inflammatory cytokine release, and tryptophan-kynurenine metabolism, while it was unable to largely adjust the disordered gut microbiota in the same manner as TG. Surprisingly, superior to fluoxetine, TG and HT could further improve dysfunction of the hypothalamic-pituitary-gonadal axis and abnormal cyclic nucleotide metabolism. CONCLUSION: TG are primarily responsible for the antidepressant activity of CT; its effect might be achieved through the bidirectional interaction of the phytochemicals and gut microbiota, and reflect the advantage of CT in the treatment of depression.


Subject(s)
Antidepressive Agents/pharmacology , Cistanche/chemistry , Depression/drug therapy , Gastrointestinal Microbiome/drug effects , Glycosides/pharmacology , Animals , Antidepressive Agents/chemistry , Depression/microbiology , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Glycosides/chemistry , Hippocampus/drug effects , Hippocampus/metabolism , Hypothalamo-Hypophyseal System/drug effects , Male , Mice, Inbred ICR , Phytochemicals/chemistry , Phytochemicals/pharmacology , Pituitary-Adrenal System/drug effects , Plant Stems/chemistry , RNA, Ribosomal, 16S , Rats, Sprague-Dawley , Serotonin/metabolism , Stress, Psychological/drug therapy
18.
Phytomedicine ; 83: 153477, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33545549

ABSTRACT

BACKGROUND: Our previous clinical research showed that the interaction between gut microbiota and bile acids (BAs) in patients with type 2 diabetes mellitus (T2DM) changed significantly. We hypothesized that T2DM could be improved by adjusting this interaction mediated by farnesoid X receptor (FXR). T2DM belongs to the category of "xiaoke" in traditional Chinese medicine. Radix scutellariae has the effects of clearing away heat and eliminating dampness, curing jaundice and quenching thirst and is widely used alone or in combination with other medicines for the treatment of T2DM in China and throughout Asia. Additionally, the interaction between Radix scutellariae and gut microbiota may influence its efficacy in the treatment of T2DM. PURPOSE: This study chose Radix scutellariae to validate that T2DM could improve by adjusting the interaction between gut microbiota and bile acid metabolism. STUDY DESIGN AND METHODS: Radix scutellariae water extract (WESB) was administered to a T2DM rat model established by a high-fat diet combined with streptozotocin. The body weight and blood glucose and insulin levels were measured. The levels of serum lipids, creatinine, uric acid, albumin and total bile acid were also detected. Changes in the pathology and histology of the pancreas, liver and kidney were observed by haematoxylin-eosin staining. The 16S rRNAs of gut microbiota were sequenced, and the faecal and serum BAs were determined by liquid chromatography tandem mass spectrometry. The expression levels of BA metabolism-associated proteins in the liver and intestine were evaluated by immunoblot analysis. RESULTS: The results showed that WESB improved hyperglycaemia, hyperlipaemia, and liver and kidney damage in T2DM rats. In addition, the abundances of key gut microbiota and the concentrations of certain secondary BAs in faeces and serum were restored. Moreover, there was a significant correlation between the restored gut microbiota and BAs, which might be related to the activation of liver cholesterol 7α-hydroxylase (CYP7A1) and the inhibition of FXR expression in the intestine rather than the liver. CONCLUSIONS: This study provided new ideas for the prevention or treatment of clinical diabetes and its complications by adjusting the interaction between gut microbiota and bile acid metabolism.


Subject(s)
Bile Acids and Salts/metabolism , Gastrointestinal Microbiome/drug effects , Hyperglycemia/drug therapy , Hyperlipidemias/drug therapy , Scutellaria baicalensis/chemistry , Animals , Cholesterol 7-alpha-Hydroxylase/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Drugs, Chinese Herbal/chemistry , Drugs, Chinese Herbal/pharmacology , Gastrointestinal Microbiome/physiology , Hyperglycemia/metabolism , Hyperglycemia/microbiology , Hyperlipidemias/metabolism , Hyperlipidemias/microbiology , Intestines/drug effects , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Male , Rats, Sprague-Dawley
19.
Gene ; 778: 145460, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33515727

ABSTRACT

BACKGROUND: Traditional Chinese medicine manipulation (TCMM) is often used to treat human skeletal muscle injury, but its mechanism remains unclear due to difficulty standardizing and quantifying manipulation parameters. METHODS: Here, dexamethasone sodium phosphate (DSP) was utilized to induce human skeletal muscle cell (HSkMC) impairments. Cells in a three-dimensional environment were divided into the control normal group (CNG), control injured group (CIG) and rolling manipulation group (RMG). The RMG was exposed to intermittent pressure imitating rolling manipulation (IPIRM) of TCMM via the FX­5000™ compression system. Skeletal muscle damage was assessed via the cell proliferation rate, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content and creatine kinase (CK) activity. Isobaric tagging for relative and absolute protein quantification (iTRAQ) and bioinformatic analysis were used to evaluate differentially expressed proteins (DEPs). RESULTS: Higher-pressure IPIRM ameliorated the skeletal muscle cell injury induced by 1.2 mM DSP. Thirteen common DEPs after IPIRM were selected. Key biological processes, molecular functions, cellular components, and pathways were identified as mechanisms underlying the protective effect of TCMM against skeletal muscle damage. Some processes (response to oxidative stress, response to wounding, response to stress and lipid metabolism signalling pathways) were related to skeletal muscle cell injury. Western blotting for 4 DEPs confirmed the reliability of iTRAQ. CONCLUSIONS: Higher-pressure IPIRM downregulated the CD36, Hsp27 and FABP4 proteins in oxidative stress and lipid metabolism pathways, alleviating excessive oxidative stress and lipid metabolism disorder in injured HSkMCs. The techniques used in this study might provide novel insights into the mechanism of TCMM.


Subject(s)
CD36 Antigens/metabolism , Dexamethasone/analogs & derivatives , Fatty Acid-Binding Proteins/metabolism , Heat-Shock Proteins/metabolism , Molecular Chaperones/metabolism , Muscle Fibers, Skeletal/cytology , Musculoskeletal Manipulations/methods , Biomechanical Phenomena , Cell Culture Techniques , Cells, Cultured , Dexamethasone/adverse effects , Down-Regulation , Humans , Lipid Metabolism/drug effects , Medicine, Chinese Traditional , Models, Biological , Muscle Fibers, Skeletal/drug effects , Muscle Fibers, Skeletal/metabolism , Oxidative Stress/drug effects , Proteomics , Signal Transduction
20.
Zhongguo Zhong Yao Za Zhi ; 46(24): 6447-6453, 2021 Dec.
Article in Chinese | MEDLINE | ID: mdl-34994137

ABSTRACT

A reliable QuEChERS-ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) analysis method was developed for the simultaneous determination of 13 steroid hormones(nrolone, androstenedione, methyltestosterone, testosterone, norethindrone, medroxyprogesterone, progesterone, diethylstilbestrol, hexan-stilbestrol, estradiol, estrotriol, cortisone, hydrocortisone) in Testis et Penis Cervi. The samples were extracted with methanol and purified by QuEChERS. Subsequently, the samples were separated by ACQUITY BEH C_(18) column and detected in the multiple reaction monitoring(MRM) mode under electrospray ionization in the positive and negative ion modes, respectively. Significant differences in the content of thirteen steroid hormones in Testis et Penis Cervi between the sika deer at different periods and the red deer were observed. The content of testosterone(10.88 µg·kg~(-1)) and hydrocortisone(12.82 µg·kg~(-1)) in Testis et Penis Cervi derived from rutting sika deer was significantly higher than the content of testosterone(1.05 µg·kg~(-1)) and hydrocortisone(0.73 µg·kg~(-1)) from antler growth stage. The content of progesterone in Testis et Penis Cervi derived from red deer was 6.07 µg·kg~(-1), significantly higher than that from sika deer. The content of progesterone in the testicle of red deer reached 27.46 µg·kg~(-1), 4.5 times greater than that in the penis of red deer. The sensitivity, accuracy, and precision of the method can meet the detection requirements, and the developed method is suitable for the measurement of hormones in animal-derived food.


Subject(s)
Deer , Tandem Mass Spectrometry , Animals , Chromatography, High Pressure Liquid , Chromatography, Liquid , Hormones , Male , Penis , Testis
SELECTION OF CITATIONS
SEARCH DETAIL